Lecture-5 Probability and Chi – square

प्रायिकता  काई – वर्ग (Probability and Chi – square):-
प्रायिकता (Probability):- किसी विशेष घटना के घटित होने की संभावना को उस घटना की प्रायिकता कहते हैं।
(The possibility of an event to occur is called the probability of that event.)
1. घटनाओं के प्रकार (Types of Events):- प्रकार हैं –
(2 types -)
i. स्वतंत्र घटनाएँ (Independent Events):- ऐसी घटनाएँ जिनके घटित होने पर दूसरी घटनाओं के घटने पर कोई प्रभाव नहीं पड़ता है, तो ये स्वतंत्र घटनाएँ कहलाती हैं।
(Events whose occurrence has no effect on the occurrence of other events are called independent events.)
ii. संबन्धित घटनाएँ (Dependent Events):- ऐसी घटनाएँ जिनके घटित होने पर दूसरी घटनाओं के घटने पर प्रभाव पड़ता है, तो ये संबन्धित घटनाएँ कहलाती हैं।
(Events whose occurrence has an effect on the occurrence of other events are called dependent events.)
2. नियम (Rules):-
i. Rule of Addition:- यदि किसी एक घटना के 2 या अधिक भिन्न तरीकों से होने की संभावना निकालनी हो तो प्रायिकतायों को जोड़ दिया जाता है। पहचान = या
(If the probability of an event occurring in 2 or more different ways is to be determined, then the probabilities are added. Identification = 'or')
उदाहरण:- एकल संकर संकरण में F2 पीढ़ी में सभी लम्बे पौधे आने की प्रायिकता
(Example:- Probability of getting all tall plants in F2 generation in a monohybrid cross)
ii. Rule of Multiplication:- यदि दो या अधिक स्वतंत्र घटनाओं के साथ – साथ होने की प्रायिकता निकालनी हो तो गुना करते हैं। पहचान = और
(If we want to find the probability that two or more independent events occur together, then probabilities are multiplied. Identification = 'and')
उदाहरण:- द्वि संकर संकरण में F2 पीढ़ी में TtRr जीन प्रारूप आने की प्रायिकता
(Example:- Probability of getting TtRr genotype in F2 generation in a dihybrid cross)
3. द्विपद प्रसारण (Binomial Expension):- दो स्वतंत्र घटनाओं के घटित होने की प्रायिकता को निम्न प्रकार से लिखा जाता है:-
(The probability of occurrence of two independent events is written as:)
स्वतंत्र घटनाओं के साथ – साथ होने की कुल प्रायिकता 1 होती है।
(The total probability of independent events occurring simultaneously is 1.)
4. पास्कल त्रिकोण (Pascal Triangle):- द्विपद प्रसरण के प्रत्येक पद के साथ एक गुणांक भी होता है। पास्कल त्रिकोण की सहायता से इन गुणांकों को ज्ञात किया जा सकता है।
(Each term of the binomial expansion is accompanied by a coefficient. These coefficients can be found with the help of Pascal's triangle.)
Ø  गुणांक (Coefficient):- गुणा में लिखी गई संख्या को गुणांक कहते हैं। प्रथम  अन्तिम पद का गुणांक हमेशा 1 होता है।
(The number written in multiplication is called coefficient. The coefficient of the first and last term is always 1.)

5. प्रायिकता के प्रकार (Types of Probability):-
i. Empirical probability:- जब हम किसी घटना के होने की संख्या को कुल संख्या से विभाजित करके प्रायिकता निकालते हैं।
(When we find the probability by dividing the number of occurrences of an event by the total number.)
उदाहरण:- यदि कुल 1000 पौधों में से 256 पौधे बौने प्राप्त हुए हों तो बौने पौधों की प्रायिकता ज्ञात करो।
(Example:- If out of 1000 plants, 256 plants are dwarf, then find the probability of getting dwarf plants.)
ii. Theoretical probability:- जब हम नियमों को अपनाते हुए प्रायिकता ज्ञात करते हैं।
(When we find the probability by following the rules.)
उदाहरण:- यदि कुल 1000 पौधों में से 256 पौधे बौने प्राप्त हुए हों तो बौने पौधों की प्रायिकता ज्ञात करो।
(Example:- If out of 1000 plants, 256 plants are dwarf, then find the probability of getting dwarf plants.)
6. प्रायिकता का मान (Value of Probability):-
7. संकरण  प्रायिकता (Hybridization and Probability):-
8. लूडो में डाइस की प्रायिकता (Probability of dice in Ludo):-
a. Rule of Addition का उपयोग (Application of rule of addition):-
Q. एक डाइस में 3 या 5 आने की प्रायिकता ज्ञात करो।
(Find the probability of getting 3 or 5 in a dice.)
b. Rule of Multiplication का उपयोग (Application of rule of multiplication):-
Q. दो डाइसों को एक बार उछालने पर दोनों में 4 आने की प्रायिकता क्या होगी?
(What is the probability that when two dice are tossed once, both of them get 4?)
9. किसी संयोजन की प्रायिकता ज्ञात करने के लिए सूत्र (Formula to find the probability of a combination):-

काई – वर्ग परीक्षण (Chi – square Test):-
·         परीक्षणों से प्राप्त आंकड़ों के परिणाम प्रत्याशित परिणामों से थोड़ा बहुत भिन्न होते हैं।
(The results of the data obtained from the tests differ slightly from the expected results.)
·         काई वर्ग परीक्षण प्राप्त तथा प्रत्याशित आंकड़ों में विसंगति के अंश को मालूम करने में सहायक होता है।
(The chi square test is helpful in finding out the degree of discrepancy between the obtained and expected data.)
·         काई वर्ग परीक्षण के सांख्यिकीय विधि है जिसका प्रयोग यह निर्धारित करने के लिए किया जाता है कि किसी परीक्षण से प्राप्त आंकड़ों के विभिन्न वर्ग एक निश्चित प्रत्याशित अनुपात में हैं अथवा नहीं
(A chi-square test is a statistical method used to determine whether different classes of data obtained from a test are in a correct expected ratio or not.)
·         प्रेक्षणों की संख्या (Number of Observations):- यह 5 से 50 तक हो सकती है। प्रेक्षणों की संख्या जितनी अधिक होगी, प्राप्त निष्कर्ष उतने ही अधिक सही होंगे।
(It can range from 5 to 50. The greater the number of observations, the more correct conclusions are obtained.)
·         फॉर्मूला (Formula):-
·         काई वर्ग का सारणी मान (Table Value of Chi square):- परिकलित काई वर्ग मान की सारणी में काई वर्ग मान से तुलना की जाती है जिससे परिणाम प्राप्त होता है। काई वर्ग का सारणी मान 2 बातों पर निर्भर करता है –
(The calculated chi square value is compared with the chi square value in the table to get the result. The table value of a chi square depends on 2 factors –)
i. स्वतंत्रता की कोटि (Degree of freedom):-
ii. सार्थकता (Significance):- प्रायिकता स्तर 0.05 के समक्ष स्वतंत्रता कोटि के सामने काई वर्ग का मान देखते हैं।
(Find the value of the chi square in front of the degree of freedom against the probability level 0.05.)
Ø  यदि परिकलित मान सारणी मान से कम आता है तो इसका अर्थ है कि विचलन सार्थक नहीं है। प्राप्त आंकड़े प्रत्याशित अनुपात में हैं। विचलन केवल संयोग मात्र है अथवा वातावरण के कारण है।
(If the calculated value is less than the table value, it means that the deviation is not significant. The data obtained are in the expected ratio. The deviation is just a coincidence or is due to the environment.)
Ø  यदि परिकलित मान सारणी मान से अधिक आता है तो इसका अर्थ है कि विचलन सार्थक है। प्राप्त आंकड़े प्रत्याशित अनुपात में नहीं हैं। विचलन आनुवंशिक कारकों के कारण है।
(If the calculated value is greater than the table value, it means that the deviation is significant. The data obtained are not in the expected ratio. The deviation is due to genetic factors.)
·         काई वर्ग सारणी (Chi – square table):-
·         P0.05:- 5% प्रयोगों में परिकलित काई वर्ग का मान सारणी मान से अधिक संयोगवश हो सकता है।  यदि 5% से अधिक प्रयोगों में ऐसा होता है तो विचलन संयोगवश  होकर किन्हीं अन्य कारणों से होता है।
(In 5% of experiments, the calculated chi square value may be more than the table value by coincidence. If this happens in more than 5% of the experiments, then the deviation is not a coincidence but due to some other reason.)
·         निराकरणीय परिकल्पना (Null Hypothesis):- काई वर्ग परीक्षण में सबसे पहले यह मान लेते हैं कि प्राप्त आंकड़े प्रत्याशित अनुपात में हैं तथा विचलन केवल संयोग मात्र है अथवा वातावरण के कारण है।
(In the chi square test, it is first assumed that the data obtained are in the expected ratio and the deviation is just coincidence or is due to the environment.)
Ø  अब यदि परिकलित मान सारणी मान से कम आता है तो निराकरणीय परिकल्पना सही होती है।
(Now if the calculated value is less than the table value, then the null hypothesis is true.)
Ø  और यदि परिकलित मान सारणी मान से अधिक आता है तो निराकरणीय परिकल्पना गलत होती है।
(And if the calculated value is more than the table value, then the null hypothesis is false.)