Chi-Square Test of Independence of Attributes in 2X2 Contingency Table

Chi-Square Test of Independence of Attributes in 2X2 Contingency Table (2X2 कंटिन्जेंसी टेबल में गुणों की स्वतंत्रता का काइ-वर्ग परीक्षण):- The Chi-Square Test of Independence is a statistical method used to determine whether there is a significant association between two categorical variables. Specifically, in the context of a 2x2 contingency table, this test assesses whether the distribution of one variable is independent of the other.
(स्वतंत्रता का काइ-वर्ग परीक्षण एक सांख्यिकीय विधि है जिसका उपयोग यह निर्धारित करने के लिए किया जाता है कि दो श्रेणीबद्ध चर के बीच कोई महत्वपूर्ण संबंध है या नहीं। विशेष रूप से, 2x2 कंटिन्जेंसी टेबल के संदर्भ में, यह परीक्षण यह आकलन करता है कि क्या एक चर का वितरण दूसरे से स्वतंत्र है।)
What is a 2x2 Contingency Table (2x2 कंटिन्जेंसी टेबल क्या है):- A 2x2 contingency table is a type of matrix that displays the frequency distribution of two categorical variables. Each variable has two levels (or categories), resulting in a table with four cells.
[2x2 कंटिन्जेंसी टेबल एक प्रकार की मैट्रिक्स है जो दो श्रेणीबद्ध चरों का आवृत्ति वितरण प्रदर्शित करती है। प्रत्येक चर में दो स्तर (या श्रेणियाँ) होते हैं, जिससे चार सेल्स वाली एक टेबल बनती है।]
Here’s a general structure of a 2x2 contingency table:
(यहाँ 2x2 कंटिन्जेंसी टेबल की सामान्य संरचना दी गई है:)
A1, A2:- Categories of Variable A 
(चर A की श्रेणियाँ)
B1, B2:-

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................


PURCHASE

(CLICK ON THIS LINK)

https://purchasebscagnotesandpapers.blogspot.com/2024/09/purchase-notes-and-solved-old-papers.html


CONTACT US

AGRICULTURE BOTANY

Whatsapp No. +91 8094920969 (Chat only)